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Abstract

Similar to two kinds of inner product spaces, Euclidean spaces and unitary spaces, we would like
to define a nondegenerate skew-symmetric bilinear forms as an inner product on a finite-dimensional
linear space over a number field of characteristic not 2, in order to derive symplectic spaces and two
kinds of especial linear transformations on them, and then explore some simple properties of them.
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1 Introduction
Symplectic Spaces are a linear space with a skew-symmetric inner product, here we imitate what we
have done in inner products, and try to do some explorations on these unique spaces in a similar way.

In the first section, we will define such symplectic spaces, then we will give the isomorphism of them,
and do some simple researches on their substructures.

In the second section, developed the theory of symplectic spaces, we will explore two kinds of especial
linear transformations on it. One preserves the inner product, and the other is self-adjoint. This section
contains some simple property of them, as well as the characteristic of their matrix, and discovery of a
group structure behind the former one and so on.

Ahead of discussion, we’d like to emphasize it that all the discussion is under finite-dimensional spaces
V and number fields K of characteristic not 2.
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2 Symplectic Forms
We will concisely restate some properties of skew-symmetric bilinear forms and nondegenerate ones which
are also called symplectic forms in this section, in order to build symplectic spaces more conveniently
later.

2.1 Skew-symmetric Bilinear Forms

Different from the inner product on Euclidean spaces, we change the symmetry inner product into skew-
symmetric one.

Definition 2.1. Suppose V is a linear space over K. Then the skew-symmetric bilinear form is a
bilinear form (·.·) : V × V → K fulfilling

∀α, β ∈ V, (α, β) = −(β, α) (1)

Generally, skew-symmetric bilinear forms can be described by following alternation property.

Property 2.1. (·.·) is a skew-symmetric bilinear form over K if and only if

(α, α) = 0 (∀α ∈ V ). (2)

Proof:
(=>)
Suppose (·.·) is a skew-symmetric bilinear form. Then (α, α) = −(α, α).
=⇒ 2(α, α) = 0 =⇒ (α, α) = 0.
(<=)
Suppose (α, α) = 0(∀α ∈ V ).
Then (α+ β, α+ β) = (α, α) + (β, β) + (α, β) + (β, α) = (α, β) + (β, α) = 0.
Thus (α, β) = −(β, α).

Through the process below, we can find a standard form of the skew-symmetric bilinear form’s metric
matrix.

Theorem 2.1. Suppose (·.·) : V × V → K is a skew-symmetric bilinear form. Then there exists a basis
to make its metric matrix shaped like

0 1
−1 0

0 1
−1 0

...
0 1
−1 0

0

...
0


. (3)

Proof:
It’s trivial when (·, ·) ≡ 0, so just consider the situation where (·, ·) ̸≡ 0.
If dimV = 1, it can only be that (·, ·) ≡ 0.
Make an inductive hypothesis that it’s true for all dimV < n. Then consider the situation where
dimV = n,
∃α, β ∈ V s.t. (α, β) = d ̸= 0 (otherwise (·, ·) ≡ 0),
and then substitute α with α

d .
Obviously, (α, β) = 1, (β, α) = −1 on this condition.
Assert α, β (otherwise (α, β) = 0) is linearly independent, and expend it to be a basis of V: α, β, γ, η · · ·
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Perform the following process of orthogonalization blow to make γ, η · · · orthogonal to α, β:
γ′ = γ + (β, γ)α− (α, γ)β,
η′ = η + (β, η)α− (α, η)β,
· · ·
We get the basis suitable for our requirements: α, β, γ′, η′ · · · .
Let a subspace W = span{γ′, η′ · · · }.
The restriction map (·, ·)|W is also a skew-symmetric bilinear form.
As dimW < dimV , based on the inductive hypothesis,
there exists a basis of W : γ′′, η′′ · · · , under which the metric matrix is in that shape.
Thus choose the basis α, β, γ′′, η′′ · · · of V , under which the metric matrix is also in that shape, as
desired.

Remark. Denote this process above by the symplectically orthonormalizing process.

Corollary 2.1. Suppose (·, ·) is a skew-symmetric bilinear form, M is the metric matrix of it. Then
rank(·, ·) = rankM is even.

2.2 Nondegenerate Skew-symmetric Bilinear Forms

To avoid the existence of a vector being orthogonal to any other vectors, we need do define nondegenerate
forms.

Definition 2.2. Suppose V is a linear space, a skew-symmetric bilinear form is nondegenerate if

∀β ∈ V, (α, β) = 0 =⇒ α = 0. (4)

Property 2.2. Suppose V is a linear space, a skew-symmetric bilinear form is nondegenerate if and
only if:

∀α ∈ V, (α, β) = 0 =⇒ β = 0. (5)

Proof:

(∀β ∈ V, (α, β) = 0 =⇒ α = 0)

⇐⇒ (∀β ∈ V, (β, α) = −(α, β) = 0 =⇒ α = 0).

Definition 2.3. Suppose V is a linear space with dimension 2k(k ∈ N+). Then a symplectic form on V

is a nondegenerate skew-symmetric bilinear forms.

Property 2.3. Suppose V is a linear space over K, (·.·) is a symplectic form if and only if there exists
a basis under which the metric matrix is

0 1
−1 0

0 1
−1 0

...
0 1
−1 0

 . (6)

Proof:
(=>)
Choose a basis of V , and then do the symplectically orthonormalizing process on it, and we get a basis
η1, η2 · · · ηn.
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Because (·.·) is nondegenerate,
assert that for all ηi(i ∈ {1, · · · , n}), there always exists another ηj(j ∈ {1, · · · , n}, j ̸= i), such that
(ηi, ηj) ̸= 0.
If not so, for all ηj(j ∈ {1, · · · , n}), we can conclude ∀ηi(i ∈ {1, · · · , n}), (ηi, ηj) = 0,
=⇒ ∀α ∈ V, (ηi, α) = 0.
Since ηi ̸= 0, it’s a contradiction to (·.·) is nondegenerate.
So there is no row or column being all zeros in the metric matrix, and the matrix is what we want, as
desired.
(<=)
Suppose there exists a basis η1, η2, · · · , η2k under which the metric matrix is like this.

Then ∀α ̸= 0 ∈ V , assume α =
2k∑
i=1

piηi(pi ∈ K), and pi(i ∈ {1, 2, · · · , 2k}) are not all zero.

Without loss of generality, suppose p1 ̸= 0. Then (η2, α) = p1 ̸= 0, and thus (·, ·) is nondegenerate.
Therefore, (·, ·) is a symplectic form.

Corollary 2.2. Suppose (·.·) is a symplectic form on linear space V . Then the metric matrix of (·, ·)
must be full rank and dimV must be even.
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3 Symplectic Spaces

3.1 Symplectic Spaces

Define a symplectic form as an inner product onto a linear space, deriving the symplectic space.

Definition 3.1. A symplectic space (V, (·, ·)) is a linear space V over K, and dimV = 2k(k ∈ N+), with
a symplectic form (·, ·) on it.

We can give a orthogonal-like definition in a symplectic space.

Definition 3.2. Suppose V is a symplectic space. Then ∀α, β ∈ V , α and β are symplectically orthogonal
if and only if (α, β) = (β, α) = 0.

Property 3.1. Suppose V is symplectic space. Then all the vectors in V are isotropic or symplectically
orthogonal to itself i.e.

∀α ∈ V, (α, α) = 0. (7)

According to the property of its inner product, all the vectors are isotropic in the space, so we don’t
define the length and the angle here yet.

Similar to the orthonormal basis in inner product spaces, we can find an analogous basis through
theorem 2.1 to make the metric matrix be a standard form.

Property 3.2. Suppose V is a symplectic space with dimension 2k(k ∈ N+). Then there exists a basis
η1, η2 · · · η2k, under which the metric matrix of the inner product is

S2k =

 S2

S2

...
S2

 (S2 =

(
0 1

−1 0

)
). (8)

Proof: We can draw this conclusion directly from property 2.3, as desired.

Remark. Denote η1, η2 · · · η2k by a primary symplectically orthonormal basis, and S2k a 2k× 2k

primary symplectically congruent matrix.

Theorem 3.1. Suppose V is a symplectic space, and dimV = 2k(∈ N+). Then there exists a basis
η1, η2 · · · η2k, under which the metric matrix of the inner product is

S2k =

(
Ek

−Ek

)
(9)

Proof:
Choose a primary symplectically orthonormal basis of V : η1, ξ1, η2, ξ2 · · · ηk, ξk.
It’s clear that the metric matrix under η1, η2, · · · , ηk, ξ1, ξ2, · · · ξk is S2k, as desired.

Remark. Denote η1, η2, · · · , ηk, ξ1, ξ2, · · · ξk by a (secondary) symplectically orthonormal basis,
and S2k a 2k × 2k (secondary) symplectically congruent matrix.

3.2 Isomorphism of Symplectic Spaces

Here we will illustrate the isomorphism of symplectic spaces, which are isomorphic as linear spaces and
preserved the inner product.

Definition 3.3. Suppose V and V ′ are both symplectic spaces. Then they are isomorphic if and only if
there exists a linear map (or an isomorphism) A ∈ Hom(V, V ′) fulfilling
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(i) A is bijective;

(ii) ∀α, β ∈ V, (A α,A β) = (α, β).

Dimensions are actually a complete invariant to describe an isomorphism on symplectic spaces, just
like what we’ve done on inner product spaces.

Theorem 3.2. Suppose V and V ′ are both symplectic spaces. Then they are isomorphic if and only if

dimV = dimV ′. (10)

Proof:
(=>)
This direction is obviously true.
(<=)
Suppose dimV = dimV = 2k(k ∈ N+), and then choose a pair of symplectically orthonormal bases from
each. Then we get two bases, ξ1, ξ2, · · · , ξ2k from V , and η1, η2, · · · , η2k from V ′.

On the one hand, construct a linear map A : V → V ′ satisfying A ξi = ηi(∀i ∈ {1, 2, · · · , 2k}).
It’s obvious that A is both injective and surjective, so A is bijective.
On the other hand, ∀α, β ∈ V , suppose α = (ξ1, ξ2, · · · , ξ2k)X, and β = (ξ1, ξ2, · · · , ξ2k)Y (X,Y ∈ K2k).
It’s clear that A α = (η1, η2, · · · , η2k)X, and A β = (η1, η2, · · · , η2k)Y .
Because the metric matrices under these two bases are the same, we get (α, β) = XTS2kY = (A α,A β).

Thus A is an isomorphism, and all the symplectic spaces with the same dimension are always isomorphic.

From theorem 3.2, we notice that all the symplectic spaces on K with dimension 2k(k ∈ N+) are
isomorphic to K2k.

3.3 Symplectic Subspaces

It’s clear that all the subspaces of a symplectic subspace is not a symplectic space. We’d like to give a
definition to its symplectic subspace.

Definition 3.4. Suppose V is a symplectic space, and W is a subspace of V . Then W is a symplectic
subspace of V if W is a symplectic space.

Property 3.3. Suppose V is a symplectic space, and W is a subspace of V . Then W is a symplectic
subspace of V if and only if the inner product of V is nondegenerate on W .

Proof:
This property is obviously true from definition 3.1.

We want to work out the condition where a subspace can be a symplectic subspace. Ahead of that,
let’s consider whether we can extend a symplectically orthonormal basis of a symplectic subspaces to the
symplectically orthonormal basis of the total space.

Lemma 3.1. Suppose V is a symplectic space with dimension 2k(k ∈ N+), and W is a symplectic subspace
with a symplectically orthonormal basis ξ1, ξ2, · · · , ξr, η1, η2, · · · , ηr(r ∈ N+, r ≤ k). Then this basis can
be extended to a symplectically orthonormal basis ξ1, ξ2, · · · ξr, ξr+1, · · · , ξk, η1, η2, · · · ηr, ηr+1, · · · , ηk of
V .
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Proof:
In order to make the proof concise, we rearrange the symplectically orthonormal basis to make it a
primary one of W ,
i.e. arrange ξ1, ξ2, · · · , ξr, η1, η2, · · · , ηr into ξ1, η1, ξ2, η2, · · · , ξr, ηr.
Then we extend it to be a basis of V : ξ1, η1, ξ2, η2, · · · , ξr, ηr, ξr+1

′, ηr+1
′, · · · , ξk′, ηk′.

Perform the symplectically orthonormalizing process on ξr+1
′, ηr+1

′, · · · , ξk′, ηk′, to make it not only or-
thogonal to ξ1, η1, ξ2, η2, · · · , ξr, ηr, but itself a symplectically orthonormal basis of span{ξ1, η1, ξ2, η2, · · · , ξr, ηr}.
Thus we can get a primary symplectically orthonormal basis ξ1, η1, ξ2, η2, · · · , ξr, ηr, ξr+1, ηr+1, · · · , ξk, ηk.
Therefore, ξ1, ξ2, · · · ξr, ξr+1, · · · , ξk, η1, η2, · · · ηr, ηr+1, · · · , ηk is a symplectically orthonormal basis of V ,
as desired.

Then come back to the main problem how can a subspace can be a symplectic subspace.

Theorem 3.3. Suppose V is a symplectic space with dimension 2k(k ∈ N+), and W is a subspace
of V . Then W is a symplectic subspace if and only if there exist a symplectically orthonormal basis
ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk of V and a substitution (i1, i2, · · · , ik) = σ(1, 2, · · · , k) such that

W = span{ξi1 , ξi2 , · · · , ξir , ηi1 , ηi2 , · · · , ηir}(r ∈ N, r ≤ k). (11)

Proof:
(<=)
Suppose ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk is a symplectically orthonormal basis of V , a substitution (i1, i2, · · · , ik) =
σ(1, 2, · · · , k), and W = span{ξi1 , ξi2 , · · · , ξir , ηi1 , ηi2 , · · · , ηir}(r ∈ N, r ≤ k).
Under ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk the metric matrix is S2k.
Choose rows and columns both are i1, i2, · · · , ir to form a submatrix S2r, which is rightly the metric
matrix of W ’s inner product under the basis ξi1 , ξi2 , · · · , ξir , ηi1 , ηi2 , · · · , ηir .
This implies W has a symplectic inner product, and thus W is a symplectic space.
(=>)
Suppose W is a symplectic subspace.
Then W has a symplectically orthonormal basis ξ1, ξ2, · · · , ξr, η1, η2, · · · , ηr(r ∈ N, r ≤ k).
According to lemma 3.1, we can extend it to a symplectically orthonormal basis ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk
of V . Then choose σ = e, completing the proof.

3.4 Symplectically Orthogonal Subspaces

Similar to orthogonal subspace in Euclidean space, all vectors symplectically orthogonal to all the vectors
in a subspace can form a subspace.

Definition 3.5. Suppose V is a symplectic space and W is a subspace of V , and define a subset
W⊥ := {α ∈ V | (α, β) = 0, ∀β ∈ W}.

Property 3.4. W⊥ is a subspace of V . Denote it by a symplectically orthogonal space of W.

Proof:
Suppose V is over K.
It’s obvious that 0 ∈ W⊥, so W⊥ is not empty.
As ∀α, β ∈ W⊥ =⇒ ∀γ ∈ W, (α+ β, γ) = (α, γ) + (α, β) = 0, thus α+ β ∈ W⊥.
∀α ∈ W⊥, k ∈ K =⇒ ∀γ ∈ W, (kα, γ) = k(α, γ) = 0.
Therefore, W⊥ is a subspace of V , as desired.

From the symplectically congruent matrix, if W is spanned by a part of symplectically orthonormal
basis, we can see some characteristics of W⊥.
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Property 3.5. Suppose V is a symplectic space with dimension 2k(k ∈ N+), ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk
is a symplectically orthonormal basis, and W = span{ξi1 , ξi2 , · · · , ξir}(r ∈ N, r ≤ k, ij ∈ {1, 2, · · · , k}(∀j ∈
{1, 2, · · · , r})). Then span{ξ1, ξ2, · · · , ξk} ⊆ W⊥.

Proof:

∀α ∈ span{ξ1, ξ2, · · · , ξk}, assume α =
k∑

i=1

piξi.

As ∀i, j ∈ {1, 2, · · · , k}, (ξi, ξj) = 0, thus ∀β ∈ W, (α, β) = 0 =⇒ α ∈ W⊥.
Therefore, span{ξ1, ξ2, · · · , ξk} ⊆ W⊥, as desired.

Corollary 3.1. Suppose V is a symplectic space with dimension 2k(k ∈ N+), ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk
is a symplectically orthonormal basis, and W = span{ξi1 , ξi2 , · · · , ξir}(r ∈ N, r ≤ k, ij ∈ {1, 2, · · · , k}(∀j ∈
{1, 2, · · · , r})). Then W ⊆ W⊥.

Proof:
From property 3.5, W ⊆ span{ξ1, ξ2, · · · , ξk} ⊆ W⊥, as desired.

Remark. On the conditions in corollary 3.1, noticed that W = W⊥ when W = span{ξ1, ξ2, · · · , ξk}.

Noticed that property 3.5 and corollary 3.1 are right as well when W = span{ξi1 , ξi2 , · · · , ξir}(r ∈
N, r ≤ k, ij ∈ {1, 2, · · · , k}(∀j ∈ {1, 2, · · · , r})), we’re showed that W +W⊥ is probably not a direct sum.

This directs us to search for the conditions where W and W⊥ can form a direct sum, or further
V = W ⊕W⊥. We surmise and then prove that the following thing is true.

Theorem 3.4. Suppose V is a symplectic space, and W is a subspace of V . Then W +W⊥ is a direct
sum if and only if W is a symplectic subspace.

Proof:
(<=)
Suppose W is a symplectic subspace of V .
From theorem 3.3, there exist a symplectically orthonormal basis ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk of V and
a substitution (i1, i2, · · · , ik) = σ(1, 2, · · · , k) such that W = span{ξi1 , ξi2 , · · · , ξir , ηi1 , ηi2 , · · · , ηir}(r ∈
N, r ≤ k).
It’s obvious that ξi1 , ξi2 , · · · , ξir , ηi1 , ηi2 , · · · , ηir is a symplectically orthonormal basis of W.
∀t ∈ {1, 2, · · · , r}, (ξit , ηit) ̸= 0 =⇒ ξit /∈ W⊥.
Similarly, ∀t ∈ {1, 2, · · · , r}, ηit /∈ W⊥.
Therefore, W ∩W⊥ = 0 =⇒ W ⊕W⊥ is valid.
(=>)
On the contrary, suppose W is not a symplectic subspace. Then from property 3.3, we know that its
inner product is degenerate.
Therefore, there exists α ̸= 0 ∈ W such that ∀β ∈ W, (α, β) = 0 =⇒ α ∈ W⊥,
which implies W ∩W⊥ ̸= 0 =⇒ W +W⊥ is not a direct sum. A contradictory.

Therefore, only when W is a symplectic subspace can W +W⊥ be a direct sum. The following thing
shows if W ⊕W⊥, it’s rightly the total space.

Corollary 3.2. Suppose V is a symplectic space, W is a symplectic space of V . Then V = W ⊕W⊥.

Proof:
We can suppose W suitable for the condition in theorem 3.4.
To prove V = W ⊕W⊥, we just need to check W⊥ = span{ξir+1

, ξir+2
, · · · , ξik , ηir+1

, ηir+2
, · · · , ηik}.

∀p ∈ {r + 1, r + 2, · · · , k}, ∀q ∈ {1, 2, · · · , r}, (ξip , ξiq ) = 0, (ξip , ηiq ) = 0 =⇒ ξip ∈ W⊥.
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Similarly, ∀p ∈ {r + 1, r + 2, · · · , k}, ηip ∈ W⊥.
Since there are no more vector from the basis ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk of V in W⊥, thus W⊥ =

span{ξir+1 , ξir+2 , · · · , ξik , ηir+1 , ηir+2 , · · · , ηik}, which implies V = W ⊕W⊥.

Corollary 3.3. Suppose V is a symplectic space, W is a symplectic space of V . Then dimV =

dimW + dimW⊥.

With these theories before, we can do direct sum decomposition to a vector in V on a symplectic
subspace W .

Definition 3.6. Suppose V is a symplectic space, and W is a symplectic subspace of V . Then ∀α ∈ V ,
it can be decomposed as α = α1 + α2 where α1 ∈ W and α2 ∈ W⊥. Denote this decomposition by a
symplectically orthogonal decomposition, and α1 by a symplectically orthogonal projection on W .

Definition 3.7. Suppose V is a symplectic space, and W is a symplectic subspace of V . As ∀α ∈ V , it
can be decomposed as α = α1 + α2 where α1 ∈ W and α2 ∈ W⊥, then define a map PS

W (α) := α1.

Property 3.6. PS
W is a linear transformation.

Proof:
Suppose V is a symplectic space over K, and W is a symplectic subspace of V .
∀α, β ∈ V, k ∈ K, assume α = α1 + α2, β = β1 + β2, where α1, β1 ∈ W and α2, β2 ∈ W⊥.
As k(α1 + β1) ∈ W and k(α2 + β2) ∈ W⊥, then PS

W (k(α + β)) = PS
W (k(α1 + β1) + k(α2 + β2)) =

PS
W (k(α1 + β1)) = kα1 + kβ1 = kPS

W (α) + kPS
W (β).

Thus it’s a linear transformation on V , as desired.

Property 3.7. (PS
W )2 = PS

W .

Proof:
Since PS

W |W is an identity transformation on W , it’s obvious that (PS
W )2 = PS

W , as desired.

Considering that almost no geometric metric has been built so far, we don’t do further discussions
on symplectically orthogonal projection in this paper.
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4 Especial Transformations on Symplectic Spaces
In this section, we will discuss two kinds of especial transformations on symplectic spaces. One is
symplectic transformations, which preserves the inner product of each pair vectors in a symplectic spaces.
The other is symplectically self-adjoint transformations, which is self-adjoint on the space.

4.1 Symplectic Transformations

We’ll define a kind of especial linear transformations on symplectic spaces like orthonormal transforma-
tions, which preserve the inner product.

Definition 4.1. Suppose V is a symplectic space. Then A ∈ End(V ) is a symplectic transformation
if

∀α, β ∈ V, (A α,A β) = (α, β). (12)

Since symplectic transformations preserve the inner product on a symplectic space, it will map a
symplectically orthonormal basis to a another symplectically orthonormal one. In addition, the converse
proposition is also true.

Property 4.1. Suppose V is a symplectic space with dimension 2k(k ∈ N+) and a symplectically or-
thonormal basis η1, η2, · · · , η2k. Then A is a symplectic transformation if and only if A η1,A η2, · · · ,A η2k

is also a symplectically orthonormal basis.

Proof:
(=>)
As A is a symplectic transformation, the matrix ((A ηi,A ηj))2k×2k = ((ηi, ηj))2k×2k

So the metric matrix under A η1,A η2, · · · ,A η2k is rightly S2k, which implies it’s also a symplectically
orthonormal basis.
(<=)
Suppose A η1,A η2, · · · ,A η2k is a symplectically orthonormal basis.
According to the proof of theorem 3.2, A is an automorphism (a isomorphism from and to itself) on V ,
thus it preserves the inner product.
So ∀α, β ∈ V, (A α,A β) = (α, β).

Remark. As an identity transformation on V is clearly a symplectic transformation, so this kind of
transformations always exists. Denote all the symplectic transformations on V by SY(V ).

This fact below shows the characteristic of symplectic transformations’ matrix under a symplectically
orthonormal basis.

Theorem 4.1. Suppose V is a symplectic space with dimension 2k(k ∈ N+). Assume A ∈ End(V ), and
the metric matrix of A under a symplectically orthonormal basis is A. Then A ∈ SY(V ) if and only if

ATS2kA = S2k. (13)

Proof:
Choose a symplectically orthonormal basis η1, η2, · · · , η2k, and suppose A (η1, η2, · · · , η2k) = (η1, η2, · · · , η2k)A.
(=>)
Let A = (X1, X2, · · · , X2k), and then A ηi = (η1, η2, · · · , η2k)Xi.
Then we get (ηi, ηj) = (A ηi,A ηj) = ((η1, η2, · · · , η2k)Xi, (η1, η2, · · · , η2k)Xj) = XT

i S2kXj .
Since the matrix ((ηi, ηj))2k×2k = S2k = (XT

i S2kXj)2k×2k, thus we can see ATS2kA = S2k.
(<=)
Just do the proof above reversely, completing the proof.

12



We denote all the matrices of symplectic transformations under a symplectically orthonormal basis
by symplectic matrices.

Definition 4.2. Suppose V is a symplectic space with dimension 2k(2k ∈ N+) over K, and η1, η2, · · · , η2k
is a symplectic basis of it. For all A ∈ SY(V ), the matrix under this basis is called a symplectic matrix.
Denote SY2k(K) as all the symplectic matrices over K.

From theorem 4.1, suppose V is a symplectic space over K with dimension 2k(k ∈ N+), and then
we can see there is an one-to-one correspondence between SY(V ) and SY2k(K) under a symplectically
orthonormal basis.

Now we try to verify there is a group structure on symplectic transformations or symplectic matrices.
Firstly verify it is closed under multiplication.

Property 4.2. The multiplication of finite symplectic matrices is a symplectic matrix.

Proof:
Suppose A,B ∈ SY2k(k ∈ N+), and this implies ATS2kA = S2k and BTS2kB = S2k.
=⇒ (AB)TS2k(AB) = BT (ATS2kA)B = BTS2kB = S2k.
Therefore, AB is a symplectic matrix; according to mathematical induction, the multiplication of finite
symplectic matrices is a symplectic matrix, as desired.

Secondly ensure the existence of multiplication inverses.

Property 4.3. Symplectic matrices must be invertible.

Proof:
We just need to considerate symplectic matrices.
Suppose A ∈ SY2k(K)(k ∈ N+), and this implies ATS2kA = S2k.
Then det(ATS2kA) = det2(A) = det(S2k) = 1 =⇒ det(A) ̸= 0, which implies A is invertible.

Remark. Due to the facts above, as well as the associativity of the matrix multiplication, it’s obvious
that both of (SY(V ), ◦) and (SY2k(K), ·) are groups.

Definition 4.3. Denote SY2k(K)(k ∈ N+) as a 2k order symplectic group over K.

We will illustrate another way to describe a symplectic matrix by submatrices, which is more suitable
for complex calculation.

Theorem 4.2. Suppose A ∈ M2k(K)(k ∈ N+), and separate A into four submatrices i.e.

A =

(
A1 A2

A3 A4

)
(A1, A2, A3, A4 ∈ (Mk(K))). (14)

Then A is a symplectic matrix if and only if

AT
1 A3 = AT

3 A1, A
T
2 A4 = AT

4 A2;

AT
1 A4 −AT

3 A2 = E.
(15)

Proof:
Suppose A is a symplectic matrix, and separate it as above.
(=>)

13



Since it’s a symplectic matrix, then ATS2kA = S2k,
i.e. (

AT
1 AT

3

AT
2 AT

4

)(
−E

E

)(
A1 A2

A3 A4

)
=

(
AT

3 A1 −AT
1 A3 AT

3 A2 −AT
1 A4

AT
4 A1 −AT

2 A3 AT
4 A2 −AT

2 A4

)
=

(
−E

E

)
(16)

Comparing the last two matrices, we get the conclusion.
(<=)
From equation (16), it’s clear that this direction is true, completing the proof.

Corollary 4.1. Suppose A ∈ SY2k(K)(k ∈ N+), and separate A the same as equation (14). Then AT
1 A3

and AT
2 A4 are both symmetry matrices.

Proof:
From theorem 4.2, AT

1 A3 = (AT
1 A3)

T , AT
2 A4 = (AT

2 A4)
T .

Therefore, AT
1 A3 and AT

2 A4 are both symmetry matrices, as desired.

4.2 Symplectically Self-adjoint Transformations

We will define a self-adjoint linear transformation on a symplectic space.

Definition 4.4. Suppose V is a symplectic space. Then A ∈ End(V ) is a symplectically self-adjoint
transformations if and only if

(A α, β) = (α,A β) (∀α, β ∈ V ). (17)

Next we will find the delicate characteristic of self-adjoint linear transformations’ matrix under a
symplectically orthonormal basis.

Theorem 4.3. Suppose V is a symplectic space with dimension 2k(k ∈ N+), and ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk
is a symplectically orthonormal basis. For A ∈ End(V ) fulfilling A (ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk) =

(ξ1, ξ2, · · · , ξk, η1, η2, · · · , ηk)A, separate A into four submatrices

A =

(
A1 B1

B2 A2

)
(A1, A2, B1, B2 ∈ Mk(K)). (18)

Then A is a symplectically self-adjoint transformation if and only if

BT
1 = −B1, B

T
2 = −B2, A

T
1 = −A2. (19)

Proof:
(=>)
Let A = (aij)2k×2k, and then

A ξi =
k∑

j=1

ajiξj +
k∑

j=1

a(j+k)iηj , and A ηi =
k∑

j=1

aj(i+k)ξj +
k∑

j=1

a(j+k)(i+k)ηj ,

which implies ∀i, j ∈ {1, 2, · · · , k}

(A ξi, ξj) = (
k∑

j=1

ajiξj , ξj) + (
k∑

j=1

a(j+k)iηj , ξj) = (
k∑

j=1

a(j+k)iηj , ξj) = a(j+k)i,

(ξi,A ξj) = (ξi,
k∑

i=1

aijξi) + (ξi,
k∑

i=1

a(i+k)jηi) = (ξi,
k∑

i=1

a(i+k)jηi) = −a(i+k)j ;

(A ηi, ηj) = (
k∑

j=1

aj(i+k)ξj , ηj) + (
k∑

j=1

a(j+k)(i+k)ηj , ηj) = (
k∑

j=1

aj(i+k)ξj , ηj) = −aj(i+k),

(ηi,A ηj) = (ηi,
k∑

i=1

ai(j+k)ξi) + (ηi,
k∑

i=1

a(i+k)(j+k)ηi) = (ηi,
k∑

i=1

ai(j+k)ξi) = ai(j+k);

(A ξi, ηj) = (
j∑

j=1

ajiξj , ηj) + (
k∑

j=1

a(j+k)iηj , ηj) = (
j∑

j=1

ajiξj , ηj) = −aji,
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(ξi,A ηj) = (ξi,
k∑

i=1

ai(j+k)ξi) + (ξi,
k∑

i=1

a(i+k)(j+k)ηi) = (ξi,
k∑

i=1

a(i+k)(j+k)ηi) = a(i+k)(j+k).

Since (ξi,A ξj) = (A ξi, ξj), (A ηi, ηj) = (ηi,A ηj) and (A ξi, ηj) = (ξi,A ηj),
we conclude that ∀i, j ∈ {1, 2, · · · , k}, ai(j+k) = −aj(i+k), a(j+k)i = −a(i+k)j , and aij = −a(j+k)(i+k).
Thus BT

1 = −B1, B
T
2 = −B2, A

T
1 = −A2.

(<=)
Suppose BT

1 = −B1, B
T
2 = −B2, A

T
1 = −A2.

According to the opposite direction’s proof, we can see A is symplectically self-adjoint on a basis,
i.e. ∀i, j ∈ {1, 2, · · · , k}, (ξi,A ξj) = (A ξi, ξj), (A ηi, ηj) = (ηi,A ηj) and (A ηi, ξj) = (ηi,A ξj).

∀α, β ∈ V , suppose α =
k∑

i=1

piξi +
k∑

i=1

pi+kηi, and β =
k∑

i=1

qiξi +
k∑

i=1

qi+kηi, then

(A α, β) = (A (

k∑
i=1

piξi +

k∑
i=1

pi+kηi),

k∑
i=1

qiξi +

k∑
i=1

qi+kηi)

= (

k∑
i=1

piA ξi,

k∑
i=1

qiξi) + (

k∑
i=1

pi+kA ηi,

k∑
i=1

qiξi) + (

k∑
i=1

piA ξi,

k∑
i=1

qi+kηi) + (

k∑
i=1

pi+kA ηi,

k∑
i=1

qi+kηi)

= (

k∑
i=1

piξi,

k∑
i=1

qiA ξi) + (

k∑
i=1

pi+kηi,

k∑
i=1

qiA ξi) + (

k∑
i=1

piξi,

k∑
i=1

qi+kA ηi) + (

k∑
i=1

pi+kηi,

k∑
i=1

qi+kA ηi)

= (

k∑
i=1

piξi +

k∑
i=1

pi+kηi,A (

k∑
i=1

qiξi +

k∑
i=1

qi+kηi)) = (α,A β) .

Thus A is symplectically self-adjoint for all vectors in V, completing the proof.

In order to make theorem 4.3 more elegant, we give the following equivalent theorem.

Theorem 4.4. Suppose V is a symplectic space with dimension 2k(k ∈ N+), and A ∈ End(V ). Then
A is a symplectically self-adjoint transformation if and only if

ATS2k = S2kA. (20)

Proof:
Separate A into four submatrices

A =

(
A1 B1

B2 A2

)
(A1, A2, B1, B2 ∈ Mk(K)).

Then calculate the LHS and RHS.

LHS =

(
BT

2 −AT
1

AT
2 −BT

1

)
,

RHS =

(
−B2 −A1

A1 B1

)
.

From theorem 4.3, we get the conclusion by comparing LHS and RHS, as desired.
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